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The large-amplitude rolling and capsize dynamics of vessels in random beam seas are
investigated using a nonlinear single-degree-of-freedom model. Included in this model
are three types of damping moments|the usual e¬ects that are treated as linear
and quadratic in the roll velocity, plus a frequency-dependent e¬ect that captures
the dissipation of energy caused by the generation of waves radiated away from the
rolling vessel. The description of this type of damping requires a history-dependent
term in the equations of motion. This memory e¬ect prevents a straightforward
application of the standard Melnikov method for determining capsize criteria. In
this work, the Melnikov function and phase-space transport techniques are extended
to derive a criterion for capsizing that can be applied to analytical models with this
type of damping. Using these theoretical results, we obtain a closed-form asymptotic
expression for a critical signi­ cant wave height, and this criterion is evaluated using
simulation studies for a realistic set of vessel parameters.

Keywords: ship capsize; nonlinear random processes;
global stability; Melnikov method

1. Introduction

The nonlinear behaviour of ship motion leading to capsize has been extensively stud-
ied by many authors using a variety of mathematical models for the ship and the sea
state. The dynamic models proposed for ship dynamics range from those describing
the full six degrees of freedom to those with only a single degree of freedom (typi-
cally roll). Examples of research using multi-degree-of-freedom models are given by
Vassalos & Spyrou (1990), Falzarano & Zhang (1993), Umeda & Renilson (1994),
Spyrou & Umeda (1995), Spyrou (1996) and Vassalos et al . (1999). A reduction in
the degrees of freedom results in more idealized models, and often allows for a more
rigorous analysis that yields mathematical results in terms of the system parame-
ters. Such reductions can, in many cases, be mathematically justi­ ed using invariant
manifold theory, as demonstrated by Chen et al . (1999). The work described in this
paper is based upon such a single-degree-of-freedom (SDOF) model, representing a
rolling vessel in random beam seas with memory-dependent hydrodynamics.
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Many methods have been developed to analyse nonlinear ship rolling for SDOF
models. Examples of the more successful of these are the regular perturbation method
(Wright & Marsh­ eld 1980; Cardo et al . 1981, 1984), the multiple scales method
(Nayfeh & Khdeir 1986a,b), the method of averaging (Nayfeh 1973; Cardo et al . 1981,
1984), the harmonic balance method (Wright & Marsh­ eld 1980; Senjanovíc 1994)
and numerical simulation methods (Thompson 1989a; b, 1990; Virgin 1987, 1989).
The ­ rst three methods are restricted to weakly nonlinear systems, which are not
representative of large-amplitude roll motion that can lead to capsize. In order to
achieve convergence for the harmonic balance method, many terms are needed, and
this often makes the resulting algebraic equations prohibitively complicated. Simu-
lation results are very powerful, especially when combined with an understanding
of the underlying phase space, as done in the ground-breaking work of Thompson
and his co-workers (Thompson 1989a; b, 1990; Virgin 1987, 1989), and more recently
by Spyrou (1996). A comprehensive review of the mechanics of ship capsize using
global geometrical techniques is given by Thompson (1997). These simulation-based
methods o¬er insight, but do not yield analytical results that allow for a priori
prediction of the e¬ects of system parameters on the response of the ship to var-
ious types of excitation. In addition, all of the above methods are applicable for
deterministic wave excitation but have not been applied to extreme ship motions
under stochastic excitation. Some analytical methods have been used for analysing
roll dynamics in random seas, including the stochastic averaging method, introduced
by Roberts (1982) and Roberts & Dacunha (1985) for application to ship motions,
and its extension by Huang et al . (1994) to a system with a ­ fth-order polynomial
restoring moment.

More recently, combined geometric/analytical methods have been applied to the
problem of nonlinear ship dynamics. Instead of directly solving the nonlinear di¬er-
ential equations, these methods emphasize the qualitative behaviour of the system,
and often allow for analytical estimates of important features of large-amplitude
responses. One of the more popular analytic techniques of this type is the Melnikov
method, which can predict parameter conditions under which capsize is possible.
This approach, which is restricted to certain classes of system models, describes con-
ditions under which solutions of the model equations can be transported from one
region of the system phase space (e.g. safety) to another (e.g. capsize). The works
of Wiggins (1990, 1992) describe the basic theory and an important general appli-
cation of Melnikov’s method, called chaotic transport theory. A signi­ cant result
from this theory is that the rate at which solutions are transported out of the safe
regions, called the phase-space ° ux rate, can be calculated from the Melnikov func-
tion. These ideas, originally developed for deterministic excitation, were applied to
the capsize problem in harmonic waves by Falzarano et al . (1992). The method has
been extended to systems that have random excitation (Frey & Simiu 1993) and
applied to the problem of ship capsize in random beam seas (Hsieh et al . 1994; Jiang
et al . 1996).

In all the above methods, the coe¯ cients used to model hydrodynamic loads are
taken to be constants. However, in general, the hydrodynamic coe¯ cients are fre-
quency dependent. For excitations of multiple or even in­ nite number of frequencies
(e.g. random excitation), it is common to approximate the hydrodynamic e¬ect by
simply using a coe¯ cient computed at a particular frequency of interest. Another
approach to this problem, and the one employed in the present study, is to model the
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frequency-dependent term as the response of an auxiliary dynamical system. Holappa
& Falzarano (1999) considered the extended state space associated with such a model,
including nonlinear rolling e¬ects and frequency-dependent coe¯ cients. Using numer-
ical integration, they found that acceptable results could be obtained for some cases
by using constant hydrodynamic coe¯ cients evaluated at a frequency based upon
the zero crossing period of the sea spectrum. They did not consider extreme motions
leading to capsize.

In this paper, we consider the frequency dependence of the system’s hydrodynamic
coe¯ cients and apply Melnikov’s method to the extended dynamical system that
includes the auxiliary system. The results are obtained for the case of random sea
states. The paper is organized as follows. We begin with a review of the basic system
model, in which we incorporate memory-dependent radiation e¬ects in the nonlinear
di¬erential equations, valid for large-amplitude roll dynamics. Attention is paid to the
relationships between the frequency and time-domain descriptions of these radiation
terms. Next, the Melnikov function for this system model with random excitation
is derived and is described in terms of its statistical properties. These results are
then linked to the likelihood of capsize through a measure of the rate of phase-space
transport. These results are used to study the e¬ects of the damping model on the
capsize criterion. Extensive simulations are used to verify the analytical results, and
the paper closes with some conclusions.

2. The model for rolling motion

(a) The basic model

Ship rolling behaviour can be represented by the following SDOF equation (see, for
example, Jiang et al . 1994):

(I44 + A44(!)) �¿ + B44(!) _¿ + B44q (!) _¿ j _¿ j + ¢ (C0 + C1 ¿ + C3 ¿ 3 + ) = F ( ½ );
(2.1)

where ¿ is the roll angle in an absolute reference frame, _( ) = d=d ½ , I44 is the
moment of inertia of the dry vessel with respect to an axis along an assumed roll
centre, F ( ½ ) is the moment due to incident waves with respect to the same axis,
A44(!) is the added mass coe¯ cient, B44(!) and B44q (!) are linear and quadratic
damping coe¯ cients, respectively, ¢ is the displacement of the vessel, C1 and C3 are
linear and nonlinear coe¯ cients of the restoring arm, and C0 the bias moment which
can arise due to wind, cargo, vessel damage or the pull of a ­ shing net. (Note that
the nonlinear restoring moment is assumed to be valid for large angles, that is, it is
derived from a curve ­ t or a series expansion.)

A44(!) and B44(!) are frequency dependent because of the presence of the free
surface. For a single sinusoidal excitation F ( ½ ) and sinusoidal response, they take
values corresponding to the excitation frequency. Only in this case can (2.1) exactly
describe the linear ship roll hydrodynamics (Ogilvie 1964). If the excitation is not
purely sinusoidal, e.g. for random excitation, A44(!) and B44(!) are no longer con-
stant and (2.1) is an approximation (see Takagi et al . 1984; Jiang et al . 1996).
For excitation represented by narrow-banded spectra, A44(!) and B44(!) may be
evaluated at the dominant excitation frequency, say, !z (see, for example, Esparza
& Falzarano 1993; Holappa & Falzarano 1999). For excitations with wide-banded
spectra, the values at the roll natural frequency may be better.
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(b) A frequency-dependent model for random excitation

To improve this frequency-domain description, a modi­ ed model is needed|one
that can be represented in the time domain. In linear hydrodynamics, the ship hydro-
dynamic forces can be viewed as the output of a linear system with the wave eleva-
tion ( ± ( ½ )) and roll motion ( ¿ ( ½ ), _¿ ( ½ ) and �¿ ( ½ )) as its inputs. The output corre-
sponding to ± ( ½ ) is the so-called external excitation F ( ½ ), which can be related to
± ( ½ ) in the frequency domain as follows:

S +
f (!) = jFroll(!)j2S +

± (!); (2.2)

where Froll(!) is the roll moment amplitude per unit wave height, S +
± (!) and S +

f (!)
are the wave elevation spectrum and the wave-induced roll moment spectrum, respec-
tively. Froll(!) depends on frequency as well as ship geometry. The wave elevation
± ( ½ ) is usually assumed to a stationary ergodic Gaussian stochastic process. One
accepted model is the ISSC two-parameter spectrum,

S +
± (!) = 0:11H2

s

!4
z

!5
exp ¡ 0:44

!z

!

4

; (2.3)

where H s is the signi­ cant wave height and !z is the characteristic wave frequency.
The hydrodynamic moment associated with ¿ ( ½ ) is the `hydrostatic’ restoring

moment, that is, ¢ (C0 + C1 ¿ + C3 ¿ 3 + ) in (2.1), the characteristics of which
depend only upon ship geometry. The hydrodynamic reaction moment due to _¿ ( ½ )
and �¿ ( ½ ) is conceptually identi­ ed with the radiation, i.e. forced motion, problem.
Mathematically, the linear radiation force can be taken as the sum of a succession of
impulse responses. Following Ogilvie (1964), the time-domain ship rolling equation
is

(I44 + A44(1)) �¿ + B44(1) _¿ +
½

0

K( ½ ¡ u) _¿ (u) du

+ B44q (!) _¿ j _¿ j + ¢ (C0 + C1 ¿ + C3 ¿ 3 + ) = F ( ½ ); (2.4)

where A44(1) is the hydrodynamic added mass coe¯ cient evaluated at the in­ nite
frequency limit and K( ½ ) is the hydrodynamic rolling moment due to impulse roll
velocity. The integral of the K( ½ ) term is usually called the memory function because
it represents how roll-radiation moments depend on the history of rolling velocity.
Modelled in this way, the hydrodynamic forces (moments) change instantaneously
with ¿ ( ½ ) and �¿ ( ½ ), but the in®uence from _¿ ( ½ ) is cumulative and will be present
for sometime before it dies out.

The time- and frequency-domain descriptions of rolling motion are connected to
each other through the following relation (Ogilvie 1964; Takagi et al . 1984):

K( ½ ) = ¡ 2

º

1

0

!(A44(!) ¡ A44(1)) sin(!½ ) d! (2.5)

=
2

º

1

0

(B44(!) ¡ B44(1)) cos(!½ ) d!: (2.6)

To obtain a time-domain description like (2.4), the hydrodynamic problem may be
solved in the frequency domain for a range of frequencies. This may be done by apply-
ing commercially available linear hydrodynamic programs, e.g. Shipmo.BM (Beck
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3.2 ́  104

2.2 ́  104

1.1 ́  104
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frequency (rad s- 1)

0 8642
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Figure 1. The added mass (A44 (!)¡A44 ( 1 )) and linear damping (B44 (!)¡B4 4 ( 1 )) coe± cients
obtained from Shipmo for Patti-B. The units are N m ¡ 1 s ¡ 2 for A44 and N m ¡ 1 s ¡ 1 for B44 .
A44 ( 1 ) = 1:441 £106 and B44 ( 1 ) = 0.

& Troesch 1990). The results for Patti-B, a ­ shing vessel, are shown in ­ gure 1 and
the corresponding K(t), obtained from (2.6), is shown in ­ gure 2. It should be noted
that A44(!) and B44(!) are both even functions of !. Therefore, A44(!) ¡ A44(1)
and B44(!) ¡ B44(1) are also even and the negative frequency domain is omit-
ted in ­ gure 1. The Fourier transform of memory function K( ½ ) is related to the
hydrodynamic coe¯ cients as follows (Takagi et al . 1984):

K (!) =
1

2 º
[B44(!) ¡ B44(1) + i!(A44(!) ¡ A44(1))]; (2.7)

where the 1=2 º may not be needed, depending on the de­ nition of the Fourier trans-
form.

The quadratic damping coe¯ cient B44q (!) in (2.1) and (2.4) is found by experi-
mental tests. While it may have some small frequency dependence (Himeno 1981),
in this work it is treated as constant. The linear roll damping goes to zero as the
frequency goes to in­ nity and roll velocity is bounded, thereby eliminating the term
B44(1) _¿ in (2.4). Note also that the added mass term tends to a non-zero constant
as the frequency goes to in­ nity (­ gure 1 shows A44(!) ¡ A44(1) instead of A44(!)).
From casuality, it is understood that the impulse response function K( ½ ) is zero for

½ < 0. Since K( ½ < 0) = 0 and _¿ ( ½ < 0) = 0, the integration limit in (2.4) can be
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Figure 2. The impulse response K( ½ ) function calculated from the inverse cosine transform of
B44 (!) ¡ B44 ( 1 ). The unit is N m ¡ 1 . B4 4 ( 1 ) = 0.

expanded to ( ¡ 1; 1) and (2.4) is rewritten as

(I44 + A44(1)) �¿ +
1

¡1
K( ½ ¡ u) _¿ (u) du

+ B44q (!) _¿ j _¿ j + ¢ (C0 + C1 ¿ + C3 ¿ 3 + ) = F ( ½ ): (2.8)

To distinguish this from the constant coe¯ cient di¬erential equation, equation (2.8)
is called the integro-di¬erential equation. For the purpose of comparison with previ-
ously published results (Hsieh et al . 1994; Jiang et al . 1996), we simplify the restoring
moment by taking Ci = 0 for i > 3. However, the method introduced here is able to
handle any form of angle-dependent hydrostatic restoring moment.

(c) Scaling the equations of motion

In large-amplitude roll, nonlinear e¬ects in the restoring moment can easily dom-
inate the behaviour. The method used in this work is a global perturbation method
that allows one to predict certain features of such nonlinear behaviour. It is based
on determining the e¬ects that relatively small damping and excitation have on the
overall nonlinear system behaviour. In fact, as shown below, the terms in the roll
equation of motion scale exactly as needed for application of this method.

To compare the relative orders of the various terms in the roll equation, we rewrite
the usual roll di¬erential equation (2.1) and the history-dependent integro-di¬erential
equation (2.8) in non-dimensional forms, as follows:

�x(t) + ° ¯ 1 _x(t) + ° ¯ 2 _x(t)j _x(t)j + ¯ + x(t) ¡ ¬ x3(t) = ° f(t) (2.9)
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Table 1. List of parameters for Patti-B, a 22.9 m, 238 t ¯shing boat

parameter dimensional value parameter dimensional value

C1 0.214 m C3 ¡0:671 m

¢ 0:237 £ 107 N Fro ll (! = 0:7) 0:301 £104 N m ¡ 1

I4 4 + A44 (!n ) 0:147 £107 kg m ¡ 2 I44 + A4 4 ( 1 ) 0:144 £ 107 kg m ¡ 2

!n of (2.9) 0.587 rad s ¡ 1 !n of (2.10) 0.593 rad s¡ 1

B44 (!n ) 0:321 £104 kg m ¡ 2 s ¡ 1 K(t)jm a x im um 0:718 £105 N m ¡ 1

B4 4 (! = 0:7) 0:548 £104 kg m ¡ 2 s ¡ 1 B4 4q 0:988 £ 105 kg m ¡ 2

and

�x(t) + °
1

¡1
¯ m (t ¡ u) _x(u) du + ° ¯ 2 _x(t)j _x(t)j + ¯ + x(t) ¡ ¬ x3(t) = ° f(t); (2.10)

where

x = ¿ ; t = ! n ½ ; _( ) =
d

dt
;

! n =
C1 ¢

I44 + A44
; « =

!

! n
;

° ¯ 1 =
B44! n

C1 ¢
; ° ¯ m (t) =

K(t)!2
n

C1 ¢
=

K(t)

I44 + A44
; ° ¯ 2 =

B44q

I44 + A44
;

¯ =
C0

C1
; ¬ =

¡ C3

C1
; ° f(t) =

F ( ½ )

C1 ¢
:

Note that A44 in (2.9) can be taken as A44 = A44(! n ) or A44 = A44(!z), and
that A44 = A44(1) for (2.10). The quadratic damping coe¯ cient B44q (!) is the
same for both cases. The various coe¯ cients for the Patti-B are listed in table 1.
Compared with the added mass and linear restoring moment terms, which are of
order 1, the nonlinear restoring coe¯ cient ¬ is 3.14, the external excitation ampli-
tude per unit wave height at a typical frequency is Froll(! = 0:7) = 0:006 and
the quadratic damping coe¯ cient ° ¯ 2 is 0.067. The maximum value of the memory
function ° ¯ m (t)jm axim u m is 0.050 for the integro-di¬erential system (equation (2.10)),
while the constant linear damping coe¯ cient ° ¯ 1 is 0.004 for the usual di¬erential
equation model given in (2.9). Therefore, the use of ° as a scaling parameter for the
damping and wave excitation terms is justi­ ed.

3. A capsize criterion for models with memory-dependent
hydrodynamic forces

(a) The system phase space and its safe basin

It is convenient to express (2.10) in ­ rst-order form, as follows:

_x(t) = y(t); (3.1)

_y(t) = ¡ ¯ ¡ x(t) + ¬ x3(t) + °
1

¡1
¯ m (t ¡ u)y(u) du ¡ ¯ 2y(t)jy(t)j + f(t) : (3.2)
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Note that (3.1) and (3.2) represent an integrable Hamiltonian system with some
small perturbations terms (Wiggins 1990). The unperturbed system ( ° = 0)

_x(t) = y(t); (3.3)

_y(t) = ¡ ¯ ¡ x(t) + ¬ x3(t) (3.4)

is a conservative two-dimensional system with solutions as shown in the (x; y) phase
planes given in ­ gures 3 and 4. Except for some special cases (Falzarano et al . 1992;
Huang et al . 1994), equations (3.3) and (3.4) must be solved numerically. For the
symmetric unbiased system ( ¯ = 0) shown in ­ gure 3, the two saddle points, cor-
responding to the angles of vanishing stability, are connected by two symmetrical
orbits known as heteroclinic orbits (shown as dashed lines). We use y +

0 (t) and y¡
0 (t)

to denote the ordinates of the upper branch and the lower branch, respectively, of
these orbits in the phase plane as functions of time. Motions taking place inside the
region enclosed by the heteroclinic orbits are bounded and safe, in terms of capsize.
This region is called the safe basin of the unperturbed system, and the heteroclinic
orbits are the basin boundaries. Motions outside of this region lead to capsize. In the
asymmetric biased system shown in ­ gure 4, the two saddle points are not connected
but the left saddle point is connected to itself by a homoclinic orbit, which forms the
boundary of a smaller safe basin. The ordinate of the homoclinic orbit is denoted as
ȳ (t). The area of the safe basin can be obtained by integration as follows:

A0 = 2
x2

x1

y +
0 (t) dx0(t)

= 2
1

¡1
[y +

0 (t)]2 dt (3.5)

for the unbiased system, where x1 and x2 are the extrema of the roll angle of the
safe basin, and

A ¯ = 2
1

0

y2
¯ (t) dt (3.6)

for the biased system, where t = 0 is taken to be the point at which ȳ = 0 away
from the saddle point.

Heteroclinic and homoclinic orbits are also known as separatrices, because they
separate bounded and unbounded motions. The generalization of these boundaries
to the damped forced ship motion is the key in analysing the global stability of this
dynamical system. Figure 5 shows the ordinates of the separatrices for di¬erent heel
angles, that is, for di¬erent levels of bias. It is noted that, by proper choice of the
starting time, y +

0 (t) is an even function of t and ȳ (t) is an odd function of t.
In the unperturbed system, i.e. the unforced and undamped system, the safe

motions stay bounded forever. Under very small harmonic excitation and small damp-
ing, the motion generally remains periodic and bounded. As the excitation levels are
increased, the motion becomes more complicated, even chaotic. Beyond a critical
level of excitation, portions of the safe basin that are close to the unperturbed bound-
ary may be transported out and become unbounded, resulting in capsize (Thomp-
son 1989a,b; Virgin 1987, 1989; Falzarano et al . 1992). For random excitations, trans-
port between the safe and unsafe areas will always occur at some level of excitation,
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x

y

Figure 3. Phase plane for ¯ = 0. Heteroclinic separatrix, W 0 , is shown as dashed lines.
The two saddles are (¡0:564; 0:0) and (+0:564; 0:0).

x

y

Figure 4. Phase plane for ¯ = 0:070, equivalent to 4¯ heel angle. Homoclinic separatrix, W ¯ , is
shown as dashed lines. The two saddles are (¡0:526; 0:0) and (+0:597; 0:0).

but starts to become signi­ cant at a particular level of excitation amplitude (Hsieh
et al . 1994). In this case, the rate of phase-space transport can be quanti­ ed by a
well-de­ ned Melnikov function (Hsieh et al . 1994).

(b) The Melnikov function

Melnikov’s method is a way to determine what happens to the separatrices associ-
ated with the system’s saddle points when the damping and forcing e¬ects are added
to the unperturbed system. Roughly speaking, it is a measure of the separation of the
stable and unstable manifolds of the saddle point. These are coincident in the unper-
turbed system, but this situation does not persist when excitation and damping are
added. In particular, the separation can be expressed as a function of the excitation
phase, speci­ ed by the initial time t0, as d(t0) = ° M (t0) + O( ° 2), where M (t0) is the
Melnikov function (Wiggins 1990). If the stable manifold, in the face of the perturba-
tions, remains `outside’ of the unstable manifold for all time, the situation is stable
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Figure 5. The ordinate of the separatrix y+
0 (t) for no heel, y ¯ (t) for biased cases.

¯ = 0:070 for 4¯ heel, ¯ = 0:140 for 8¯ heel.

in the sense that responses started inside the safe basin will remain stable, even if
they are close to the basin boundary. In this case, the Melnikov function, by the sign
convention generally adopted, will be negative for all time. On the other hand, if the
stable manifold is `inside’ of the unstable manifold for all time, all solutions starting
near the basin boundary will lead to capsize. Here, the Melnikov function is positive
for all time. The more interesting case is when these manifolds cross one another as
a function of time, continually switching relative orientations. (This is the situation
when chaos appears (see Wiggins 1990).) In this case, some solutions started near
the boundary will escape, and this opens the door for the possibility of capsize even
if the vessel starts in the safe basin. In fact, chaotic transport theory shows that
the area under the positive part of the Melnikov function is related to the rate at
which solutions, as measured by volumes of the phase space, escape the safe basin.
This is quanti­ ed by a measure of the time-averaged ®ux of phase space out of the
safe basin|a quantity that is related directly to the Melnikov function, as described
below.

Knowledge of this ®ux rate allows one to obtain a quantitative measure for the
likelihood of capsize for a given vessel and sea state. Descriptions of this technique
in the context of ship capsize can be found in the literature. The Melnikov theory for
the usual roll di¬erential equation has been considered in detail for both harmonic
and random excitation (Falzarano et al . 1992, Hsieh et al . 1994; Jiang et al . 1996).
However, the integro-di¬erential equation requires special treatment. This is due to
the fact that the integral term in the perturbation does not depend simply on the
instantaneous values of the system states and time, but on the history of the roll
velocity. This complicates the analysis and the interpretation of the perturbation in a
non-trivial way. However, using a standard approach that approximates the memory
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e¬ects by the output of a ­ nite-dimensional linear dynamical system, one can modify
the Melnikov theory to handle these e¬ects. The technical details of this analysis are
presented in Appendix A. The net outcome of the results derived there is that one
can procedurally treat the integral perturbation term in the usual manner that has
been developed for perturbations of planar systems.

The Melnikov function associated with (3.1) and (3.2) is de­ ned as (for details,
see Hsieh et al . 1994; Jiang et al . 1996)

M ¯ (t0) =
1

¡1
y ¯ (t) ¡

1

¡1
¯ m (t ¡ u)ȳ (u) du ¡ ¯ 2ȳ (t)jȳ (t)j + f(t + t0) dt

= ~M ¯ (t0) ¡ ·M ¯ ; (3.7)

where

·M ¯ =
1

¡1
ȳ (t) ® ¯ (t) dt + ¯ 2

1

¡1
y ¯ (t)2jȳ (t)j dt; (3.8)

~M ¯ (t0) =
1

¡1
ȳ (t)f(t + t0) dt (3.9)

are the constant and oscillatory parts of the Melnikov function, respectively, and

® ¯ (t; y) =
1

¡1
¯ m (t ¡ u)y ¯ (u) du: (3.10)

For the unbiased case ( ¯ = 0), the Melnikov function M0(t0) is de­ ned along one
of the heteroclinic orbits, in which case (Hsieh et al . 1994),

M0(t0) = ~M0(t0) ¡ ·M0;

where

·M0 =
1

¡1
y +

0 (t) ® 0(t; y) dt + ¯ 2

1

¡1
(y +

0 (t))2jy0(t)j dt; (3.11)

~M0(t0) =
1

¡1
y +

0 (t)f(t + t0) dt: (3.12)

These results can be compared with those obtained from the standard di¬erential
equation model. Of course, the unperturbed versions of (2.9) and (2.10) are iden-
tical. And, even though the perturbed phase space is very di¬erent for these two
cases, the corresponding Melnikov functions have similar form. In fact, the formu-
lae of the oscillatory parts are the same (i.e. equations (3.9) and (3.12)), but the
non-dimensional force f(t) is di¬erent from the dimensional excitation F ( ½ ), simply
because the total inertia used to scale ½ is di¬erent. Here, the constant part of the
Melnikov function for (2.9) does not involve a memory term and is given by

·M ¯ = ¯ 1

1

¡1
ȳ (t)2 dt + ¯ 2

1

¡1
ȳ (t)2jy ¯ (t)j dt: (3.13)

In order to calculate ·M ¯ in (3.8), ® ¯ (t; y) in (3.10) must ­ rst be determined. It
is recognized from (3.10) that ® ¯ (t; y) is the convolution of K(t) and ȳ (t). It can
be numerically evaluated by a combination of fast Fourier transform and the inverse
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Figure 6. The intermediate function ® ¯ (t; y). ¯ = 0:070 for 4¯ heel, ¯ = 0:140 for 8¯ heel.

fast Fourier transform (Bracewell 1978). The results for di¬erent values of the heel
angle are presented in ­ gure 6. Unlike the constant coe¯ cient representation, where
the linear damping ·M ¯ changes proportionally with the linear damping coe¯ cient
(equation (3.13)), the memory-function representation of the linear hydrodynamic
radiation in®uences ·M ¯ in a complex manner through ® ¯ (t; y). This will be explored
further in x 4.

(c) Some features of the Melnikov function

The constant part of the Melnikov function depends directly on the damping coef-
­ cients, while the oscillating part is linearly related to the excitation. The complete
Melnikov function describes the relative orientation of the stable and unstable man-
ifolds of the saddle point(s) at the angle(s) of vanishing stability as a function of
time (via the forcing phase t0). For an unforced system with non-zero damping, the
Melnikov function is a negative constant. This implies that the unstable manifolds of
the saddle points at the angles of vanishing stability lie inside the corresponding sta-
ble manifolds (Guckenheimer & Holmes 1983; Wiggins 1990). In this case, all initial
conditions located inside the safe basin of the associated undamped system will lead
to motions that approach the stable upright position of the ship as t ! 1. As the
excitation amplitude is increased from zero, the Melnikov function starts to oscillate
about its mean, with an amplitude proportional to the excitation level. When the
forcing is su¯ ciently large that the Melnikov function crosses zero and is therefore
positive for some duration of the excitation, the unstable manifold lies outside of
the stable manifold, and solutions between them will be transported out of the safe
region. These regions between the manifolds are known as `lobes’ (Wiggins 1992).
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When lobes exist, the situation exists in which some solutions with initial conditions
near the separatrix will escape to capsize.

For Gaussian excitation, the Melnikov function will have some zero crossings for
any non-zero level of wave forcing, implying that there is a non-zero probability for
capsizing as soon as the wave forcing is introduced. One consequence of this situation
is that the dynamics of the system started near the boundary of the safe basin
are essentially unpredictable, and capsize may occur (Thomson 1989b; Falzarano et
al . 1992). In fact, for the case of harmonic excitation, the safe basin boundary has
a fractal nature (Moon & Li 1985). In both the harmonic and random excitation
cases, the likelihood of an initial condition escaping the safe region depends on a
measure of the positive part of the Melnikov function. This can be quanti­ ed by
knowing the mean frequency of the zero crossings of M (t0), the percentage of time
that it is positive, and its positive amplitude. These, in turn, depend on the level
of dissipation, through the mean value of M (t0), and on the overall amplitude and
frequency content of the excitation, which dictate the oscillatory part of M (t0). Our
goal here is to obtain a measure of these quantities and relate them to the likelihood
of capsize.

(d ) The useful statistics of M (t0)

For the case of random seas, the oscillatory part of the Melnikov function ~M ¯ (t0)
is a stochastic process. The results for this term are the same for both the di¬er-
ential and integro-di¬erential system models, since damping a¬ects only the mean
value of M (t0). The correlation between ~M ¯ (t0) and f(t) is linear, through the con-
volution integral indicated in (3.9) and (3.12). Using the evenness and oddness of
the roll velocity taken along the basin boundaries, equations (3.9) and (3.12) can be
transformed as follows:

~M ¯ (t0) =
1

¡1
¡ ȳ (t0 ¡ t)f(t) dt (3.14)

for the homoclinic case, and similarly for the heteroclinic case,

~M0(t0) =
1

1
y +

0 (t0 ¡ t)f(t) dt: (3.15)

If f(t) is a zero mean random process, then the expected value of ~M0(t0) is also zero,

E[ ~M ¯ ] = 0: (3.16)

Under the assumption that f(t) is stationary, the spectrum of ~M ¯ (t0) is given by

S +
~M ¯

( « ) = (2 º )2jY ¯ ( « )j2S +
f ( « ) (3.17)

= (2 º )2jY ¯ ( « )j2jFroll( « )j2S +
± (« ); (3.18)

where Y ¯ ( « ) is the Fourier transform of y ¯ (t),

Y ¯ ( « ) =
1

2 º

1

¡1
ȳ (t)e¡i « t dt; (3.19)

and S +
f ( « ), Froll( « ) and S +

± ( « ) are the scaled forcing spectrum, roll moment per
unit wave height and incident wave spectrum, respectively.
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The Gaussian and ergodic natures of a random process are preserved under lin-
ear transformations. Thus, if the random wave elevation ± (t) is a stationary ergodic
Gaussian random process, then the roll excitation f(t) and the oscillatory part of Mel-
nikov function ~M ¯ (t0) will share those properties, since they are all linearly related
to one another. For this stationary random process, the mean square value, the
autocorrelation function and the power spectrum are related as follows:

R ~M ¯
(s; t) = R ~M ¯

(s ¡ t)

= R ~M ¯
( ½ )

=
1

0

S +
~M ¯

( « )e¡i « ½ d « ; (3.20)

E[ ~M 2
¯ (t0)] = R ~M ¯

(0)

=
1

0

S +
~M ¯

( « ) d « ; (3.21)

where ½ = s ¡ t and R ~M ¯
(s; t) is a function of ½ only because ~M ¯ (t0) is stationary.

By using (3.18), (3.16), (3.17) and (3.21), one can obtain the following relationship
between the variance of ~M ¯ (t0) and the spectrum of the wave elevation:

¼ 2
~M ¯

= E[ ~M 2
¯ (t0)]

=
1

0

(2º )2jY ¯ ( « )j2jFroll( « )j2S +
± ( « ) d « : (3.22)

Because ~M ¯ (t0) is a stationary Gaussian process, it is uniquely determined by its
mean ·M ¯ and variance ¼ 2

~M ¯
. The zero-mean random variable x = ~M ¯ (t0) has the fol-

lowing probability density function at any value of t0:

p ~M ¯
(x) =

1p
2º ¼ ~M ¯

exp ¡ x2

2 ¼ 2
~M ¯

: (3.23)

This Gaussian structure will yield an analytical measure for the positive part of the
Melnikov function.

(e) Phase-space transport and the Melnikov function

The amount of phase space transported out of the safe region is related to the
areas of the lobes formed when the stable manifold is inside of the unstable mani-
fold, i.e. where M (t0) > 0. (Recall that these are the situations for which solutions
can escape the safe region.) This area can be approximated in asymptotic form by
integrating the Melnikov function over those times for which it is positive (Wiggins
1992). For a random process, the following sum of integrals of the Melnikov function
provides the desired measure of the area of phase space transported out of the safe
region over a given time interval (Frey & Simiu 1993):

· = °
i

ti2

ti1

M ¯ (t0) dt0 + O( ° 2); (3.24)

where [ti1; ti2] is the ith interval over which M ¯ (t0) > 0.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Capsize criteria with memory-dependent models 1775

In order to have a more useful measure of the likelihood of the escape of solutions
out of the safe basin under random excitation, we take the long-time average of this
quantity, resulting in a rate of phase-space ®ux, as follows (Hsieh et al . 1994):

© ¯ = lim
T ! 1

°

2T

T

¡T

M +
¯ (t0) dt0 + O( ° 2)

= lim
T ! 1

°

2T

T

¡T

( ~M ¯ (t0) ¡ ·M ¯ ) + dt0 + O( ° 2); (3.25)

where M +
¯ (t0) denotes the positive part of the Melnikov function. Since M ¯ (t0) is

an ergodic stationary Gaussian process, the time average of M ¯ (t0) is equal to its
ensemble average,

lim
T ! 1

1

2T

T

¡T

M +
¯ (t0) dt0 = E[M +

¯ (t0)]

= E[( ~M ¯ (t0) ¡ ·M ¯ ) + ]:

Therefore, the rate of phase-space ®ux becomes, to leading order,

© ¯ = ° E[( ~M ¯ (t0) ¡ ·M ¯ ) + ] + O( ° 2) (3.26)

= °
1

·M ¯

(x ¡ ·M ¯ )p ~M ¯
(x) dx + O( ° 2); (3.27)

where x is a random variable representing the Gaussian random process ~M ¯ (t0), with
zero mean, variance ¼ 2

~M ¯
and the PDF given in (3.23).

The standard Gaussian probability density function p(z) and the associated prob-
ability distribution function P (z) are related as follows:

p(z) =
1p
2 º

exp( ¡ 1
2
z2); (3.28)

P (z) =
z

¡1
p(x) dx: (3.29)

Using these relationships, equation (3.27) can be written as

© ¯ = °
1

·M ¯

(x ¡ ·M ¯ )
1p

2 º ¼ ~M ¯

exp ¡ x2

2 ¼ 2
~M ¯

dx + O( ° 2)

= ° ¼ ~M ¯

1

·M ¯ =¼ ~M¯

1p
2º

z ¡
·M ¯

¼ ~M ¯

exp( ¡ 1
2
z2) dz + O( ° 2)

= ° ¼ ~M ¯
p

·M ¯

¼ ~M ¯

+ ·M ¯ P
·M ¯

¼ ~M ¯

¡ ·M ¯ + O( ° 2) (3.30)

for the biased case, and as

© u p p er = ° ¼ ~M0
p

·M0

¼ ~M0

+ ·M0P
·M0

¼ ~M0

¡ ·M0 + O( ° 2) (3.31)

for the unbiased case. Here, © u p p er is the rate of phase-space ®ux through the upper
heteroclinic orbit.
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If we denote ¼ 1
¯ as the RMS value of ~M ¯ (t0) for unit signi­ cant wave height, and

note that ¼ ~M ¯
is proportional to the signi­ cant wave height H s , © ¯ can be rewritten

in a form normalized by the area of the unperturbed safe basin, as follows:

© ¯

A ¯

=
°

A ¯

H s ¼
1
¯ p

·M ¯

H s ¼
1
¯

+ ·M ¯ P
·M ¯

H s ¼
1
¯

¡ ·M ¯ + O( ° 2): (3.32)

The dependence of the ®ux rate © ¯ =A ¯ in (2.10) on the signi­ cant wave height
H s for several values of bias, at a characteristic wave period Ts = 9:0 s, is shown
in ­ gure 7. Note that there is a ­ nite amount of phase-space ®ux for any non-
zero excitation. This means that there is a ­ nite probability of capsize for any non-
zero wave height, although for small wave heights, capsize is highly unlikely over
any reasonable exposure time. The ®ux rate is very small for small wave heights,
but begins to grow signi­ cantly beyond a critical wave height, after which it grows
steadily as H s increases, eventually approaching a linear asymptote. This asymptote
is achieved as H s ! 1, and is given by

© ¯

A ¯
º °

Ā

1p
2 º

H s ¼
1
¯ ¡ 1

2
·M ¯ : (3.33)

The asymptote, shown in ­ gure 7 for three values of the heel angle, intersects the
H s -axis at a wave height given by

H ¤
s =

p
2 º ·M ¯

2 ¼ 1
¯

: (3.34)

We de­ ne H ¤
s as the critical wave height at which substantial phase-space ®ux begins

to occur, suggesting an increased risk of operating the ship. It provides a measure
of the combined e¬ects of the large-amplitude roll characteristics of the vessel, the
amount of dissipation present and the nature of the wave excitation in a relatively
simple way. Figure 8 shows how H ¤

s varies with the characteristic wave period and
the heel angle.

As pointed out by Hsieh et al . (1994), the exact quantitative relation of the rate of
phase-space ®ux © ¯ and the likelihood of capsize depends on the distribution of the
response in the phase space, the location of the phase space being transported, the
replenishing of phase space into the safe basin from the unsafe area and the exposure
time. The details of such relationships are presently unknown. However, simulation
results presented by Hsieh et al . (1994) demonstrated a high correlation between
© ¯ and the probability of capsize. We use H ¤

s as the critical signi­ cant wave height
because, graphically, it represents the starting point where the rate of phase-space
®ux increases virtually linearly with the signi­ cant wave height.

If one deems that H ¤
s corresponds to a capsize probability too high (or too low) to

be acceptable, one can calculate a di¬erent criterion. For example, one can de­ ne a
certain rate of phase-space ®ux, and compute the associated signi­ cant wave height
for di¬erent characteristic wave periods, using (3.32). Critical wave height curves
computed in this manner take similar shapes to the shape of the H ¤

s curve. However,
they di¬er since the H ¤

s curve does not maintain a constant rate of phase-space ®ux as
the wave period varies. The results for the Patti-B are shown in ­ gures 9, 10 and 11
for a 0, 4 and 8¯ bias angle, respectively. Also note that the rates of phase-space
®ux at H ¤

s change signi­ cantly with the bias angle. In the unbiased case, the rate of
phase-space ®ux at H ¤

s is approximately 0.004, while it is about 0.0035 and 0.0025
for the 4 and 8¯ bias cases, respectively.
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Figure 7. The rate of phase-space ° ux at 9.0 s characteristic wave period considering memory
e® ects, 2© up p e r =A0 for the zero heel and © ¯ =A ¯ for the rest. The short broken lines are the linear
asymptotes.
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Figure 8. The critical signi¯cant wave height H¤
s . Memory e® ects are taken into account.
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Figure 9. The signi¯cant wave height at 0¯ heel corresponding to equal level of phase-space ° ux
compared with the critical signi¯cant wave height H¤

s . R̀oPSF’ refers to the rate of phase-space
° ux.
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Figure 10. The signi¯cant wave height at 4¯ heel corresponding to equal level of phase-space ° ux
compared with the critical signi¯cant wave height H¤

s . R̀oPSF’ refers to the rate of phase-space
° ux.
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Figure 11. The signi¯cant wave height at 8¯ heel corresponding to equal level of phase-space ° ux
compared with the critical signi¯cant wave height H¤

s . R̀oPSF’ refers to the rate of phase-space
° ux.

4. The e® ects of the damping model on the critical wave height

Similar calculations for H ¤
s have been previously carried out for the system with the

usual linear and quadratic damping terms, i.e. equation (2.9) (Jiang et al . 1996).
However, as mentioned before, there is some uncertainty in the linear damping coef-
­ cient when these constant coe¯ cient models are employed, since no single frequency
is present in the response. The range of possible values includes those at the linear
natural roll frequency ! n , or a typical excitation frequency, such as the characteristic
wave frequency !z , but neither are the correct representation. Using the memory-
dependent model, one can determine the importance of the linear damping model
employed, and the e¬ect that various approximations and assumptions will have on
the prediction of system behaviour in terms of capsize probability. These results can
be used to determine the most appropriate value of the frequency for evaluating the
equivalent linear damping coe¯ cient in the constant coe¯ cient models.

To investigate these issues, we calculated H ¤
s for three cases of constant frequency:

B44 = 0:0, B44 = B44(! n ) and B44 = B44(!z), and the results were compared with
those from the memory function model. The results are depicted in ­ gures 12, 13
and 14 for heel angles of 0, 4 and 8¯, respectively. The linear damping model, which
uses the memory function, accounts for 16% of the total damping e¬ect in the unbi-
ased case, as shown in table 2. That is, the di¬erence between H ¤

s with the memory
function and H ¤

s with no linear damping is 16% of the ­ nal H ¤
s value. The in®uence of

the memory function model is increased in the biased systems, to 27% for 4¯ heel, and
to 34% for 8¯ heel. Similar conclusions are found to hold for the model that assumes
B44 = B44(! n ), where it represents 15, 18 and 26% of the total damping for 0, 4
and 8¯ heel angles, respectively. Similarly, for the model that assumes B44 = B44(!z),

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1780 C. Jiang, A. W. Troesch and S. W. Shaw

12

11

10

9

8

7

6

19
wave period (s)

7 171513

memory function
B44 (0.587)
B44 (0.7)
B44 = 0.0

119

Figure 12. The in° uence of linear damping modelling on the critical signi¯cant wave height H¤
s

in zero heel. B4 4 (0:587) corresponds to ! = !n . B44 (0:700) corresponds to a typical excitation
frequency ! = 0:700.

the results are 23, 28 and 37% for 0, 4 and 8¯ heel angles, respectively. It is seen that,
for the vessel under consideration, the model using B44 = B44(! n ) underestimates
the e¬ects of linear damping, leading to conservative safety predictions. On the other
hand, the B44 = B44(!z) model slightly overestimates the damping e¬ect, resulting
in an underestimation of the actual likelihood of capsize. There is no reason to expect
that these trends will be universal. If the constant coe¯ cient model is to be used
for ship stability studies, the `best’ value for B44 will depend on the ship’s natural
frequency, the ship geometry and the characteristics of the wave spectrum.

The B44 = B44(! n ) model can approximately achieve the same damping e¬ect
as the memory function model and causes only small error in H ¤

s in the unbiased
case (see ­ gure 12). However, when the vessel heels, the B44 = B44(! n ) model
underestimates H ¤

s . In contrast, the B44 = B44(!z) model overestimates H ¤
s for

the unbiased system (it yields almost double the actual linear damping e¬ect), but
closely matches the memory function result for the two biased cases considered. It
is anticipated that, for other heel angles, B44 at other frequencies would o¬er better
estimates for H ¤

s . It must be concluded that, in general, there is no `best’ frequency.

5. Simulations of the integro-di® erential equations

(a) The simulation model

In this section, time-domain simulation is used to calibrate the capsize probability
at the critical signi­ cant wave height H ¤

s . Random time histories (realizations) of
the roll moment are generated from the spectrum (equation (2.2)) by the scheme
proposed by Cuong et al . (1982). The equations of motion for the di¬erent models
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Figure 13. The in° uence of linear damping modelling on the critical signi¯cant wave height H¤
s

in 4¯ heel. B44 (0:587) corresponds to ! = !n . B44 (0:700) corresponds to a typical excitation
frequency ! = 0:700.

6

5

4

3

2

1

0

19
wave period (s)

7 171513119

memory function
B44 (0.587)
B44 (0.7)
B44 = 0.0

Figure 14. The in° uence of linear damping modelling on the critical signi¯cant wave height H¤
s

in 8¯ heel. B44 (0:587) corresponds to ! = !n . B44 (0:700) corresponds to a typical excitation
frequency ! = !z = 0:700.
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Table 2. The asymptotic signi¯cant wave heights for di® erent linear damping models

(The characteristic wave period is 9.0 s for all cases. B44 (!n ) = 0:321 £ 104 kg m ¡ 2 s ¡ 1 ,
B44 (!z ) = 0:548 £104 kg m ¡ 2 s ¡ 1 , !n = 0:587 rad s ¡ 1 , !z = 0:700 rad s ¡ 1 .)

Ts = 9:0 s 0¯ heel 4¯ heel 8¯ heel

damping modelling (m) H¤
s H¤

s H¤
s

memory function 8.87 5.97 3.15

B4 4 = B44 (!n ) 8.68 5.33 2.79

B4 4 = B44 (!z ) 9.59 6.03 3.29

B4 4 = 0:0 7.40 4.35 2.07

are then integrated for an exposure time of up to 34.1 min. Capsize is de­ ned as the
roll angle exceeding the angle of vanishing stability at any time during the exposure
period. For each signi­ cant wave height and characteristic wave period combination,
500 realizations are used. Each realization is based on a statistically equivalent but
temporally di¬erent roll-excitation time history. The initial roll angle and roll velocity
are set equal to zero.

For the usual roll di¬erential equation, i.e. equation (2.1), there are no special
numerical di¯ culties. However, integration of the history-dependent integro-di¬eren-
tial system is not so straightforward, due to the convolution integral. There exist
several methods in the literature to numerically integrate the integro-di¬erential
equation, i.e. equations (2.4) or (2.8), depending how the convolution integral is
handled.

The direct integration method is used by Takagi et al . (1984) in their study of
motions of moored bodies. This is e¬ective since the impulse response function is
non-zero over a relatively short period (­ gure 2) and direct integration of the convo-
lution integral is quick. If the memory e¬ects span a large time interval, this method
becomes ine¯ cient.

Another approach to this class of systems is to use an augmented state space (see,
for example, McCreight 1986; Jiang et al . 1987; Holappa & Falzarano 1999). Such
an approach is often quite useful, and in this study it provides a relatively simple
means of justifying the application of the planar Melnikov method (see appendices A
and B). This method uses an augmented state space to approximate the convolution
integral by a system of n linear ODEs whose transfer function can be constructed
from the linear damping and added mass coe¯ cients in a systematic, but not unique,
manner (Warwick 1989). In this way, evaluation of the convolution integral is avoided
at the expense of expanding the original system of two ODEs into n + 2 ­ rst-order
ODEs. However, the new n + 2 equations are only an approximation of the real
system, hopefully converging with large n. Such a procedure is described in detail in
Appendix B.

In this work, we use direct integration, since the system memory is ca. 8 s (­ gure 2).
The computation time of solving the integro-di¬erential equations in this manner is
approximately only twice that of using the constant coe¯ cient equations, i.e. equa-
tion (2.8). For direct simulation, a fourth-order Runge{Kutta method is employed.
Errors may arise from the usual round-o¬ and from the truncation of the memory
function. The usual round-o¬ errors are dealt with by choosing an appropriate step
size, which was found to be about 150 time-steps per characteristic wave period.
Sample simulation results show that the length of the memory function is not of
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Figure 15. Comparison between simulation and theoretical results for 0¯ heel angle with
memory e® ect being accounted for. The integration time-step is 0.0625 s.

primary importance in estimating the probability of capsize, provided that its most
signi­ cant part, i.e. the ­ rst 8 s, is not discarded (Jiang 1995).

(b) The results of simulation

The results of simulations, including memory e¬ects, are summarized in ­ gures 15,
16 and 17, which show a comparison of capsize probability with the prediction of
Melnikov analysis. The probability of capsize around the critical signi­ cant wave
height curve is in the range of 3{7, 5{9 and 1{4% for the unbiased, ¡ 4¯ heel and
¡ 8¯ heel cases, respectively. As can be seen from these ­ gures, the theoretical asymp-
tote qualitatively matches the results of the simulations quite well. The likelihood
of capsize, as predicted by the theoretical critical curves, varies from the simulation
results by 1{9% for the heel angles and exposure times under consideration. How-
ever, the relative ease of computing this curve, when compared against the extensive
nature of the stochastic simulations, strongly recommends its use as an investigative
engineering tool.

6. Conclusions

On a general level, this work has shown that analysis tools from the theory of dynam-
ical systems can be used to examine nonlinear systems with memory and random
excitation. The applications of the Melnikov function and phase-space transport tech-
niques are used to predict extreme responses that lead to failure. The methodology
is quite general and can be applied to expanded multi-degree-of-freedom systems.
There are no restrictions on the nature of the memory function, other than it needs
to be modelled by a linear integro-di¬erential equation, or an expanded state space
model.

In this work, these methods have been applied to the capsizing of ships in a ran-
dom seaway. Closed-form asymptotic expressions for the rate of phase-space ®ux and
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Figure 16. Comparison between simulation and theoretical results for ¡4¯ heel angle with
memory e® ect being accounted for. The integration time-step is 0.0625 s.
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Figure 17. Comparison between simulation and theoretical results for ¡8¯ heel angle with
memory e® ect being accounted for. The integration time-step is 0.0625 s.

an associated critical signi­ cant wave height are derived and evaluated using simu-
lations. Using these results, it was found that the memory function in®uences the
probability of capsize. And, while one can replace the memory function with con-
stant added mass and damping coe¯ cients evaluated at a single frequency, a general
relation for the determination of the `best’ frequency could not be found. Depend-
ing upon vessel conditions (heel angle and mass distribution) and sea environment
(signi­ cant wave height and characteristic wave period), di¬erent strategies for the
selection of the `best’ frequency may be possible. It is expected that none of these
strategies is universal. As such, it is recommended that the hydrodynamic coe¯ cients
include the in®uence of memory e¬ects.
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Appendix A. The Melnikov function for systems with memory e® ects

In this appendix we provide the technical justi­ cation for the Melnikov function used
in the paper, and for the use of phase-space transport ideas for this class of systems.
This is necessary because the perturbation terms in the integro-di¬erential equation
are not simply dependent on the instantaneous states of the system and the forcing
phase; they also depend on the history of the states. Therefore, the perturbed phase
space is actually in­ nite dimensional. In this derivation, we will use an expanded
state space model to approximate the memory e¬ects. We begin by approximating the
memory term as the output of a ­ nite-dimensional dynamical system. The procedure
for accomplishing this is described in detail in Appendix B. We then use the general
structure of these systems to derive the appropriate Melnikov function and provide
an interpretation of the phase-space transport. The key step to the approach taken
is to show that the dynamics of this high-dimensional system really take place in a
low-dimensional stable invariant manifold, on which the usual results apply.

The memory term can be approximated by the output of some ­ nite-dimensional
linear system, as follows. First, denote

z1(y; t) =
1

¡1
¯ m (t ¡ u)y(u) du (A 1)

and let z1(y; t) be the ­ rst element of a vector z(y; t), whose dynamics are governed
by a linear system of the form

_z = Az + by; (A 2)

where the (scalar) roll velocity y plays the role of an input. In this setting, the
equations of motion, in ­ rst-order form, are given by

_x(t) = y(t);

_y(t) = f(x) + ° g(x; y; cz; t);

_z = Az + by;

where the speci­ c forms of f(x), g(x; y; cz; t), A and b can be found by comparison
with the equations given in Appendix B, and c is simply a vector that picks o¬ the
­ rst element of z. Our goal here is to show that the ­ rst two equations correctly
capture the full dynamics, at least in some invariant manifold of the (x; y; z) phase
space, by replacing z with an appropriate function of (x; y) on the invariant manifold.
In that case, the usual Melnikov theory goes through, as does the interpretation of
phase-space transport for periodically forced oscillators (Wiggins 1992).

In the unperturbed system (i.e. ° = 0), the (x; y) dynamics are uncoupled from
the z dynamics. For notational purposes, we denote the unperturbed solutions as
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(x; y; z) = (x ¯ ; ȳ ; z ¯ ). As described in x 5, the (x ¯ ; y ¯ ) dynamics are those of the
well-known conservative phase planes shown in ­ gures 3 and 4. Once y ¯ is known
from the (x ¯ ; y ¯ ) system, the z ¯ dynamics are those of a linear system with known
input. The speci­ c solution of interest here is the one that is bounded for all time
when the input y is bounded and the eigenvalues of A are all stable; it is given by

z ¯ (y; t) =
t

¡1
eA(t¡ ½ )by ¯ ( ½ ) d ½ : (A 3)

These solutions for z represent, in the fully extended (x; y; z) phase space, a two-
dimensional invariant manifold of the form z = F0(x; y). Furthermore, since the
transient part of the z dynamics is exponentially stable, this is an attracting mani-
fold.

For 0 < ° ½ 1, the (x; y; z) dynamics become fully coupled. For this system, there
exists an asymptotically stable, perturbed manifold of the form F = F0 + ° F1 + .
On this manifold, the equations of motion are given by

_x(t) = y(t);

_y(t) = f(x) + ° g(x; y; cF0(x; y); t) + O( ° 2):
(A 4)

The Melnikov function for this two-dimensional system is then given by the usual
planar result, as follows:

M ¯ (t0) =
1

¡1
ȳ (t)g(x ¯ ; y ¯ ; cz ¯ ; t + t0) dt; (A 5)

where the unperturbed solution is taken along the homoclinic or heteroclinic orbit.
Finally, by identifying the various terms and their roles in the perturbation func-

tion g, especially the fact that

cz = z1 =
1

¡1
¯ m (t ¡ u)y(u) du; (A 6)

it can be concluded that the Melnikov function for the system with memory can
be well approximated by the expression given in (3.7). This, of course, depends
on ­ nding an auxiliary linear system whose output provides a good match for the
memory function. That procedure is described in Appendix B.

Appendix B. The extended state space model for the radiation force

The radiation force is proportional to the convolution integral

­ 1( ½ ) =
+ 1

¡1
K( ½ ¡ u) _¿ (u) du: (B 1)

It is to be approximated as an output of an nth-order linear system with _¿ ( ½ ) as its
input. The form of this equation is taken to be

an + 1
dn

d ½ n
+ an

dn¡1

d ½ n¡1
+ an¡1

dn¡2

d ½ n¡2
+ + a2

d

d ½
+ a1 ­ 1 = _¿ : (B 2)
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As pointed out in x 5, there are several linear systems able to model this radiation
moment, given by di¬erent orders and coe¯ cients in the linear di¬erential operator.
Taking the Fourier transform of both sides yields the transfer function of (B 2),

B1(!)

© d (!)
= 1

n + 1

k = 1

ak(i!)k¡1; (B 3)

where B1(!) and © d (!) are the Fourier transforms of ­ 1( ½ ) and _¿ d ( ½ ), respectively.
From the Fourier transform of (B 1), we obtain

B1(!)

© d (!)
= 2 º K (!): (B 4)

The Fourier transform of the memory function K( ½ ) is given by (see, for example,
Takagi et al . 1984)

K (!) = B44(!) ¡ B44(1) + i!(A44(!) ¡ A44(1)): (B 5)

Comparing these expressions for the transfer function, we obtain the relation

B44(!) ¡ B44(1) + i!(A44(!) ¡ A44(1)) = 1
n + 1

k = 1

ak(i!)k¡1; (B 6)

which is equivalent to

(B44(!) ¡ B44(1)) ¡ i!(A44(!) ¡ A44(1))

¡
=

n+ 1

k = 1

ak(i!)k¡1; (B 7)

where

¡ = (B44(!) ¡ B44(1))2 + !2(A44(!) ¡ A44(1))2: (B 8)

By equating the real and imaginary parts of the two sides, we obtain two objective
functions that are used for curving ­ tting. For example, the objective functions for
n = 8 are given by

a9!8 ¡ a7!6 + a5!4 ¡ a3!2 + a1 =
B44(!) ¡ B44(1)

¡
; (B 9)

a8!6 ¡ a6!4 + a4!2 ¡ a2 =
A44(!) ¡ A44(1)

¡
: (B 10)

It is frequently di¯ cult to ­ nd polynomials which accurately ­ t (B 9) and (B 10),
especially in the most useful frequency ranges ((0:0; 2:0) rad s¡1 in our case). The
results of using the À 2 ­ tting method (Press et al . 1992) are shown in ­ gures 18
and 19 and table 3. The results vary signi­ cantly if di¬erent individual standard
deviations ¼ 1 are used in di¬erent frequency ranges. In `curve ­ t 1’, we set ¼ i = 0:2,
1.0 and 1 for ! 2 (0:0; 2:0), (2:0; 6:0) and (6:0; 1), respectively. In `curve ­ t 2’,
we set ¼ i = 0:2, 1.0 and 1 for ! 2 (0:0; 2:0), (2:0; 3:0) and (3:0; 1), respectively.
Neither of the two 9th-order polynomials ­ ts the curves very well (see ­ gures 18
and 19) and the ai change signi­ cantly (table 3). In addition, the term 1=an+ 1 is of
order 1011 in `curve ­ t 1’ (and 107 in `curve ­ t 2’) while the other leading coe¯ cients
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Figure 18. Curve ¯t for (B44 (!) ¡B44 ( 1 ))=¡ based on À 2 ¯tting method.

in the system’s sti¬ matrix (equation (B 11)) are of order 1. This makes the range of
relative magnitudes of the eigenvalues of the expanded system unacceptably large,
which in turn makes numerical integration di¯ cult, a common problem with this
approach. Higher-order polynomials can achieve a better ­ t, but at some point the
expanded system will be impossible to solve numerically. In addition, the cost spent
on solving such a large system of equations will eventually exceed the cost of direct
integration of the system with the memory function.

Once the size of the model has been determined and the values of the coe¯ cients
are obtained, the ­ rst-order form of the augmented dynamical system is given by

_¿
_¿ d

_­ 1
_­ 2

...
_­ n

=

0 1 0 0 0 0
¡ !2

n ¡ b44(1) ¡ C­ 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
...

...
...

...
...

...
...

0
1

an + 1

¡ a1

an+ 1

¡ a2

an+ 1

¡ a3

an + 1

¡ a n

an + 1

¿
¿ d

­ 1

­ 2

...
­ n

+

0
F n l( ½ )

0
0
...
0

;

(B 11)

where

¿ d = _¿ ; b44(1) =
B44(1)

I44 + A44(1)
; C­ =

1

I44 + A44(1)

F n l( ½ ) =
F ( ½ ) ¡ B44q (!) ¿ d j ¿ d j ¡ ¢ (C0 + C3 ¿ 3 + : : : )

I44 + A44(1)
:
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Figure 19. Curve ¯t for (A44 (!) ¡ A44 ( 1 ))=¡ based on À 2 ¯tting method.

Table 3. The deviation of curve ¯tting results with individual standard variations

c̀urve ¯t 1’ c̀urve ¯t 2’

a1 5:577 82 £10¡ 6 ¡8:919 87 £10¡ 9

a2 ¡4:555 31 £10¡ 5 ¡5:428 38 £10¡ 5

a3 ¡5:722 07 £10¡ 6 ¡2:589 28 £10¡ 5

a4 ¡1:677 55 £10¡ 5 ¡3:741 55 £10¡ 5

a5 ¡2:037 68 £10¡ 7 ¡1:169 85 £10¡ 5

a6 ¡1:016 94 £10¡ 6 ¡8:274 78 £10¡ 6

a7 ¡9:191 87 £10¡ 9 ¡2:050 76 £10¡ 6

a8 ¡1:873 69 £10¡ 8 ¡5:686 81 £10¡ 7

a9 ¡4:301 84 £10¡ 11 ¡1:137 07 £10¡ 7

This is of the form required for the Melnikov theory of Appendix A, with ­ 1 = z1

and (¿ ; _¿ ) = (x; y).
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